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Several organisms haveretainedmethyltransferase2 (Dnmt2) as their
only candidate DNA methyltransferase gene. However, information
about Dnmt2-dependent methylation patterns has been limited to
a few isolated loci andtheresults havebeen discussed controversially.
Inaddition, recentstudieshaveshownthatDnmt2 functionsas a tRNA
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methylation patterns in these organisms and thus uncover fundamen-
tal differences between Dnmt1/3-dependent and Dnmt2-dependent
methylomes.

Results
Whole-Genome Bisulfite Sequencing of Three Independent Dnmt2-
Only Models. We investigated Dnmt2-dependent DNA methylation
in three independentmodels: (i)S. mansoni, (ii)D. melanogaster, and
(iii) a triple knockout (TKO) mouse embryonic stem cell line, which
is deficient for Dnmt1, Dnmt3a, and Dnmt3b but has retained an
intact Dnmt2 gene (28). All samples were obtained from the same
strains and developmental stages that were used for previous studies
(Table 1). Furthermore, Dnmt2 activity was confirmed by methyla-
tionanalysis of tRNAAsp,which showedhigh levels ofmethylation for
the established C38 target site in all three samples (Fig. S1).
We then used whole-genome bisulfite sequencing to compre-

hensively analyze genomic DNA methylation patterns in all three
models. After bisulfite deamination, DNA libraries were pre-
pared and subjected to paired-end Illumina sequencing. Read
pairs were subsequently mapped to the corresponding reference
genomes using BSMAP 2.0 (29). This resulted in average strand-
specific genome coverages of 13× for Schistosoma, 32× for Dro-
sophila, and 1× for TKO cells (Table 1). The conversion rate of
mapped cytosine residues was >98.0% in all cases (Table 1), which
suggested that bisulfite deamination had been efficient and that
the sequence information could be used for methylation analysis.

Methylome of S. mansoni
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conversion. Human sperm DNA is known to be highly methyl-
ated (32) and the spiked-in DNA sample thus served as an im-
portant internal control.
A detailed analysis of the Drosophila data showed that the

vast majority (99.7%) of cytosine residues appeared completely
unmethylated (ratio <0.1), whereas only 0.003% showed a non-
conversion ratio >0.5 (Fig. 2A). This distribution was sub-
stantially different for the spiked-in human sperm DNA, which
showed complete methylation (ratio >0.9) for 4.3% of the cy-
tosine residues that were analyzed (Fig. 2A). Pronounced dif-
ferences between the Drosophila and the control sample were
also detectable for the dinucleotide sequence context of non-
converted cytosine residues. In the Drosophila dataset, only 11%
of the nonconverted cytosine residues were found in CpG
dinucleotides (Fig. 2B). This distribution strongly contrasted the
control sample, which showed a high degree (98%) of CpG
specificity (Fig. 2B). Finally, we also used our data for a detailed
analysis of Drosophila Invader4



many contained a single nonconverted cytosine residue (Fig. 4B).
Notably, a substantial fraction of windows with more than two
nonconverted cytosine residues in wild-type embryos also showed
inefficient conversion in Dnmt2 mutant embryos (Fig. 4C). These
regions were often characterized by a high CG content and a low
base complexity, which would render them relatively resistant to
denaturation during the bisulfite conversion step. These results
further argue against genuine DNA methylation in Drosophila
embryos and provide additional support for the notion that
Dnmt2-only organisms lack DNA methylation.

Discussion
The DNA methylation status of Dnmt2-only organisms has been
a controversial topic for a long time. This may be related to the
fact that the reported methylation levels were often close to the
detection limits of the various methods that were used for DNA
methylation analysis (22). The results from chromatographic
analyses (23, 36, 37) may also have been affected by contami-
nation with methylated DNA from other organisms, including
bacteria. Similarly, immunological detection approaches of
5-methylcytosine in Drosophila embryos (38) could have been af-
fected by low antibody specificity. Also, many previous bisulfite
sequencing analyses were limited to isolated genomic loci (23, 24),
which made themmore susceptible to false positive results. Finally,
it is also possible that the conserved catalytic mechanism of Dnmt2
(11) permits a limited “star activity,” i.e. a low enzymatic activity
with relaxed substrate specificity, on DNA substrates. This star
activity could be responsible for residual amounts of genuine DNA
methylation and might become increased under certain experi-
mental conditions (8, 38). However, because we could not detect

any relevant DNA methylation patterns in our analyses, we would
interpret these spurious methylation marks as biological artifacts.
The comprehensive nature of whole-genome bisulfite se-

quencing datasets allows additional quality control steps during
data analysis and permits the identification of false positives with
higher sensitivity (25). Also, whole-genome bisulfite sequencing
protocols use substantially fewer PCR amplification cycles than
locus-specific bisulfi
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Accession Numbers. Sequencing data have been deposited in the Gene Ex-
pression Omnibus database under accession nos. GSE39996 (D. melanogaster,
together with human sperm spike-in), GSE39997 (S. mansoni), and GSE42170
(mouse TKO ES cell line, together with M13 PCR fragment spike-in).
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